<説明>
ヒトが音を認識するときは、頭の中では その音に似たものを再構成して 理解しているのではないだろうか。
音は積み木のようなもので、積み木の大きさや種類を調整して組み合わせることで、聞いた音と類似した音を作りだしその構成を知り、音を理解しているのでは
ないだろうか? つまり、物を理解するにはそれと似たものを構成できる能力が必要であるとの立場をとる。
このような仮説のもと、音の周波数特性(スペクトル)と 音の波形(「か」の音や「ぱ」の音など)を比較して、その音と類似したものを作り出すためにはど
うしたらよいかを、簡単な音の生成模型を使って実験してみたものが以下のページの内容である。
No.1 2009年8月23日
実際に発声された音声のスペクトルと、管模型から計算される理論スペクトルを比較することによって、管模型の特徴を示す共鳴パラメーター と 管の長さ
を推定することを考えてみよう。
まずは、単に2者を表示して 見て比較する、FFT分析スペクトルと2管模型からのスペクトルの比較のSCILABのデモ プログラム
a_wavfile_edit_216.sci を載
せておきま
す。 管模型のパラメーターはヒトが2つのスペクトルを見て比べながらマニュアルで設定するようにしてあります。 評価方法としてスペクトルの距離を最小
にする最小2乗
法による管模型のパラメータの推定も入っていますが、この手のパターンをマッチングするにはこの評価方法では不適切で上手くいかないようです。スペクト
ルの全体を使わず 選んだ部分を使う評価方法は その2につづきます。
このデモで使う音声データの a_sample.wav
と o_sample.wav と i_sample.wav
も、SCILABのhome または
bin ディレクトリーにコピーしておいてから、このプログラムをexecしてみてください。 SCILABについては、SCILABのホームページを見てください。
このプログラムを実
際に動作させるためには、
ご使用されるプログラミング環境に合わせて修正・変更・追加などが必要かもしれません。
また、バグが含まれている可能性があります。
万一、このデモンストレーション用プログラムを動作させる場合は、あなたの責任でおこなってくださいね。
//-----------------------------------------------------------------------------------------
// A .wav Edit and Compare with 2 tubes
model's wave or 3 tubes model's wave.
//
// a trial of leastsq method to estimate
tube model
parameters.
// *This evaluation by simple siguma
|x(i)-y(i)|^2 between spectrum may be a fault example to match this
kind of pattern.
//
// for window scilab-4.1.2
//
//
.........................................................................................
// PLEASE PAY ATTENSION that this program may have some bugs and also
you may adjust program
// to fit your circumstances. If you use this program, everything
should be done at your own risk.
// Thanks.
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
T_DEMO=1; // set T_DEMO=1 for demonstration, beside set
T_DEMO=0 when normal
SEL_CODE=1; // dummy set
//
//--------------------------------------------------------------------
// Get Scilab Version
// global
scilab_version_number=4; // dummy set
//
ver0=getversion();
p0=strindex(ver0,'-');
p1=strindex(ver0,'.');
ver1=part(ver0,(p0(1)+1):(p1(1)-1));
scilab_version_number=str2code(ver1)
//---------------------------------------------------------------------
// some functions to replace from scilab-4.1.2 to scilab-5.1.1
function [xmode00]=x_choose0(a,b,c)
if scilab_version_number >= 5 then
xmode00=x_choose(a,['Please select one and
double-click it'],c);
else
xmode00=x_choose(a,b,c);
end
endfunction
//----------------------------------------------------------------------
// Sound format has a difference among scilab version.
// for sound wav file
if scilab_version_number == 4 then
f412=1; // flag to detect scilab 4.1.2
f511=0;
elseif scilab_version_number >= 5 then
f412=1;
f511=1; // flag to detect scilab 5.1.1
else
f412=0;
f511=0;
end
//---------------------------------------------------------------------
// get Scilab current directory
getcwd
//===================================================================
// global variables No. 1
// for .wav 1
chs1=0; // channels
qty1=0; // data quantity, samples
size1=0; // actual loaded data quantity
fs1=0; // sampling frequency
bit1=0; // bits
wavfile1=''; // file name, this will be overwritten.
wdat1=zeros(1,10);// data of the .wav, only one first channel,
this will be overwritten.
// for fft
fft_point1=512;
db_fft1=zeros(1,512); // this will be overwritten.
phi_fft1=zeros(1,512); // this will be overwritten.
Min_Freq=150; // set plot maximum frequency by unit is [Hz]
Max_Freq=7500; // set plot maximum frequency by unit is [Hz]
// for display
width0=400; // default display width
ydat0=zeros(1,width0+1); // for all data
ydat1=zeros(1,width0+1); // for portion
xziku0=[0:1:width0]; // for all data
xziku1=[0:1:width0]; // for portion
sp1=1; // start point for actual
display
ep1=1; // end point for actual
display
// for others
defch1=1; // default channel 1
f_win=1; // flag if windows
//---------------------------------------
//
function save_wavprop()
save('wavprop.dat',fs1,size1,bit1,wdat1,sp1,ep1,ydat0,ydat1,xziku0,xziku1);
endfunction
function
[fs1,size1,bit1,wdat1,sp1,ep1,ydat0,ydat1,xziku0,xziku1]=load_wavprop()
load('wavprop.dat','fs1','size1','bit1','wdat1','sp1','ep1','ydat0','ydat1','xziku0','xziku1');
endfunction
//
function save_wfft()
save('wavfft.dat',fft_point1,db_fft1,phi_fft1);
endfunction
function [fft_point1,db_fft1,phi_fft1]=load_wfft()
load('wavfft.dat','fft_point1','db_fft1','phi_fft1');
endfunction
//
//--------------------------------------
function [wavfile1,chs1,qty1,fs1,bit1,f412,SEL_CODE]=get_wavfile_pro()
// choose wave file
if T_DEMO == 1 then
//+ select
SEL_CODE=x_choose0(['a_sample';'o_sample'; 'manual
select'],['Please select one'],'default')
if SEL_CODE == 3 then // when manual select
SEL_CODE = 999;
elseif SEL_CODE <= 0 then
SEL_CODE=1;
end
//- select
if SEL_CODE == 1 then // a_sample
disp(' This is demonstration. Copy this file and
a_sample.wav to your scilab''s bin or home
directory.');
[x,ierr]=fileinfo('a_sample.wav');
xs=size(x);
if xs(1)==0 then
disp('Choose a_sample.wav file');
if scilab_version_number >= 5 then
wavfile1=uigetfile(["*.wav"],"","Choose a_sample.wav file");
else
wavfile1=tk_getfile(Title="Choose
a_sample.wav file");
end
else
wavfile1='a_sample.wav';
end
elseif SEL_CODE == 2 then // o_sample
disp(' This is demonstration. Copy this file and
o_sample.wav to your scilab''s bin or home
directory.');
[x,ierr]=fileinfo('o_sample.wav');
xs=size(x);
if xs(1)==0 then
disp('Choose o_sample.wav file');
if scilab_version_number >= 5 then
wavfile1=uigetfile(["*.wav"],"","Choose o_sample.wav file");
else
wavfile1=tk_getfile(Title="Choose
o_sample.wav file");
end
else
wavfile1='o_sample.wav';
end
else // include SEL_CODE == 999
if scilab_version_number >= 5 then
wavfile1=uigetfile(["*.wav"],"","Choose a .wav
file");
else
wavfile1=tk_getfile(Title="Choose a .wav file name");
end
end
else
if scilab_version_number >= 5 then
wavfile1=uigetfile(["*.wav"],"","Choose a .wav
file");
else
wavfile1=tk_getfile(Title="Choose a .wav file name");
end
SEL_CODE = 999;
end
// read channels and samples
cs1=wavread(wavfile1,'size');
chs1=cs1(2); // channel
qty1=cs1(1); // samples
//...
if chs1 > 2 then // invert data for scilab-4.1.2
chs1=cs1(1);
qty1=cs1(2);
f412=1;
else
f412=0;
end
//...
[y,fs1,bit1]=wavread(wavfile1,[1 1]);
endfunction
//--------------------------------------
// function display the .wav property
function disp_pro_wav()
disp(qty1,'data quantity',bit1,
'bits',chs1,'channels',fs1,'sampling frequency');
endfunction
//--------------------------------------
function [wdat1, size1]=read_one_ch_of_wav(wavfile1)
y=wavread(wavfile1);
ysize=size(y);
if ysize(2) == chs1 then
wdat1=zeros(1,ysize(1));
if chs1 == 1 then
// for v=1:ysize(1)
// wdat1(v)=y(v);
// end
wdat1=y';
else
disp('Channels are more than two, but, only 1st
channel is stored.');
for v=1:ysize(1)
wdat1(v)=y(v,defch1);
end
end
size1=ysize(1);
disp(size1,'stored data size is');
elseif ysize(1) == chs1 then // for scilab-4.1.2
wdat1=zeros(1,ysize(2));
if chs1 == 1 then
// for v=1:ysize(2)
// wdat1(v)=y(v);
// end
wdat1=y;
else
disp('Channels are more than two, but, only 1st
channel is stored.');
for v=1:ysize(2)
wdat1(v)=y(defch1,v);
end
end
size1=ysize(2);
disp(size1,'stored data size is');
end
endfunction
//-----------------------------------------------
function plot_wave1(disp0)
wb0=xget('window'); // stack old window
xset('window',disp0); // create new windows
clf();
subplot(211);
//plot(xziku0,ydat0,'b');
plot2d(xziku0,ydat0,style=[color("blue")]);
xtitle('waveform all');
// When linux scilab-3.1 2nd subplot does not work well.
subplot(212);
//plot(xziku1,ydat1,'b');
plot2d(xziku1,ydat1,style=[color("blue")]);
xtitle('waveform selected');
xset('window',wb0); // push old windows
endfunction
//--------------------------------------
function [ydat1,xziku1]=make_width_data( work1, wsize1)
wsize2=wsize1 - sp1 + 1;
wsize3=ep1-sp1+1;
if wsize3 > (width0+1) then
wstep1= wsize3 / (width0+1);
for v=1:(width0+1)
ydat1(v)= work1( sp1 + int(wstep1 * (v - 1)));
xziku1(v)= sp1 + int(wstep1 * (v - 1));
end
else
for v=1:(width0+1)
if v <= wsize3 then
ydat1(v)=work1((sp1-1)+v);
else
ydat1(v)=0.;
end
xziku1(v)=(sp1-1)+v;
end
end
//
// plot_wave1(0);
endfunction
//----------------------------------------------------------------
function [wsp1, wep1]= reset_sp1_ep1(wsize1)
wsp1=1;
wep1=wsize1;
endfunction
//----------------------------------------------------------------
function [wsp1, wep1]= set_sp1_ep1(wsize1)
txt1=['start point';'end point'];
wstr1=sprintf('%d',sp1);
wstr2=sprintf('%d',ep1);
sig1=x_mdialog('Input start point and end point for portion
display.',txt1, [wstr1 ; wstr2 ]);
if sig1==[] then
arg1=evstr(wstr1);
arg2=evstr(wstr2);
else
arg1=evstr(sig1(1));
arg2=evstr(sig1(2));
end
//
//disp(arg2,'arg2',arg1,'arg1');
//
wsp1=sp1;
wep1=ep1;
if arg1 >= 1 then
if arg2 <= wsize1 then
if arg1 < arg2 then
wsp1=arg1;
wep1=arg2;
disp(wep1,'ep1',wsp1,'sp1');
end
end
end
endfunction
//----------------------------------------------------------------
function snd_play1()
// this sound doesnot work well on windows scilab-3.1.1 and linux
scilab-3.1
// but, this sound works on windows scilab-4.1.2. But, linux
scilab-4.1.2 doesnot!
wdatw=zeros(ep1-sp1+1);
for v=sp1:ep1
wdatw(v-sp1+1)=wdat1(v);
end
if f_win == 1 then
if f412 == 1 then // for windows scilab-4.1.2
sound(wdatw' ,fs1,bit1);
else
// for windows scilab-3.1.1
if fs1 == 22050 then
sound(wdatw,fs1,bit1);
disp('This function may work, if luckily.');
elseif fs1 == 44100 then // down-sampling from
44100 to 22050
wdatw2=zeros((ep1-sp1)/2+1);
for v=1:((ep1-sp1)/2+1)
wdatw2(v)=wdat1(sp1 + 2 * (v -1) );
end
disp('down-sampling from 44100 to 22050');
sound(wdatw2,22050,bit1);
disp('This function may work, if luckily.');
else
//sound(wdatw,fs1,bit1);
disp('This function does not work.');
end
end
else
disp('Sorry, but, this function does not work.');
end
endfunction
//
//----------------------------------------------------------------
function snd_save1()
//
wavefilename= input(' + enter file name for saved .wav file
=>',["string"]);
//
wdatw=zeros(ep1-sp1+1);
for v=sp1:ep1
wdatw(v-sp1+1)=wdat1(v);
end
if f412 == 1 then // for windows scilab-4.1.2
wavwrite(wdatw' ,fs1,bit1,wavefilename );
else
// for windows scilab-3.1.1
wavwrite(wdatw,fs1,bit1, wavefilename);
end
endfunction
//--- check platform is windows -----------------------------------
if isdir('c:\\') then
f_win=1;
else
f_win=0;
end
//
//=================================================================
//
// +MAIN (1)program starts
//
[wavfile1,chs1,qty1,fs1,bit1,f412,SEL_CODE]=get_wavfile_pro();
disp_pro_wav();
[wdat1, size1]=read_one_ch_of_wav(wavfile1);
sp1=1;
ep1=size1;
[ydat0,xziku0]=make_width_data( wdat1, size1);
if T_DEMO==1 then
if SEL_CODE == 1 then // a_sample
sp1=1900;
ep1=2413;
elseif SEL_CODE == 2 then // o_sample
sp1=2700;
ep1=3300;
else // include SEL_CODE == 999
[sp1, ep1]= set_sp1_ep1(size1);
end
end
[ydat1,xziku1]=make_width_data( wdat1, size1);
plot_wave1(0);
//
// -MAIN (1)program starts
// select .wav and set portion to make it fft
//==============================================================++=
//
//
//
function [fft_point1]=set_fft_points()
l1=list('points',3,['128','256','512','1024']);
wrep=x_choices('Select FFT points',list(l1));
//
fft_point1=512; // default
if wrep== 1 then
fft_point1=128;
elseif wrep== 2 then
fft_point1=256;
elseif wrep== 3 then
fft_point1=512;
elseif wrep== 4 then
fft_point1=1024;
end
endfunction
//----------------------------------------------------
function [frq1,sfrq1,is1,ie1]=set_frq( spec1024 )
// spec1024, tube model response no syuhasuu bunkainou wo agwru
tame
dfsw= fs1 / fft_point1;
is1= ceil(Min_Freq / dfsw);
ie1= int(Max_Freq / dfsw);
if spec1024 == 1024 then
dfsw2= fs1 / 1024.0;
else
dfsw2=dfsw;
end
frq1=[(dfsw * is1):dfsw2:(dfsw * ie1)];
frqs=size(frq1);
sfrq1=frqs(2);
endfunction
//-----------------------------------------------
function plot_fft1(disp0)
wb0=xget('window'); // stack old window
xset('window',disp0); // create new windows
[frq1,sfrq1,is1,ie1]=set_frq(0);
clf();
subplot(211);
gainplot(frq1,db_fft1,phi_fft1);
xtitle('frequency response of waveform selected by fft analysis');
subplot(212);
//plot(xziku1,ydat1,'b');
plot2d(xziku1,ydat1,style=[color("blue")]);
xtitle('waveform selected');
xset('window',wb0); // push old windows
endfunction
//----------------------------------------------------
function [db_fft1,phi_fft1]=do_fft_wav()
if size1 >= ( sp1 + fft_point1 - 1 ) then
win_hn=window('hn',fft_point1); // make hanning windows
data
wdatw=zeros(1, fft_point1);
for v=1:fft_point1
wdatw(v)=wdat1(sp1 + v - 1);
end
wdatw2= wdatw .* win_hn;
fftwout=fft( wdatw2, -1 );
//
[frq1,sfrq1,is1,ie1]=set_frq(0);
//
respw=zeros(1,sfrq1);
ct0=1;
for loop=is1:ie1
respw(ct0)=fftwout(loop+1);
ct0=ct0+1;
end
[db_fft1,phi_fft1] =dbphi(respw);
end // -if size1 <= ( sp1 + fft_point1 - 1 ) then
endfunction
//
//=================================================================
//
// +MAIN (2)program starts
// about fft
if T_DEMO==1 then
[db_fft1, phi_fft1]=do_fft_wav();
plot_fft1(1);
end
//
// -MAIN (2)program starts
//
//==============================================================++=
//
//
// global variables No. 2
//
c0=35000; // constant. the speed of sound is round
35000 cm/second
ts=1.0 / fs1;
//
L1=1; // this will be overwritten.
L2=1; // this will be overwritten.
L3=1; // this will be overwritten.
A1=1; // this will be overwritten.
A2=1; // this will be overwritten.
A3=1; // this will be overwritten.
//
ttl_Length=18.5; // set total length of combined tubes, Two
Tubes, and
etc
ttl_Area=10; // a constant in this program. set
total area of combined tubes, Two Tubes, and etc for dummy display
l1=0; // this will be overwritten.
l2=0; // this will be overwritten.
rg=1; // a constant in this program. When glottis
r1=0.8; // this will be overwritten.
r2=0.8; // this will be overwritten.
rl=0.9; // set adjust reduction response. rl is variable,
however use one constant in this.
fc=1000; // this will be overwritten. set cut off frequency
of High Pass Filter by unit is [Hz]
trise=6.0; // this will be overwritten.
//tfall=0.7; // this will be overwritten.
tfall=2.0; // this will be overwritten.
tclosed=5.0; // use ONLY in waveform making
//
yg_res1= ones(1,1024); // this will be overwritten.
tube2_res1= ones(1,1024); // this will be overwritten.
hpf_res1= ones(1,1024); // this will be overwritten.
overall_res1=zeros(1,1024); // this will be overwritten.
db_2tube=zeros(1,1024); // this will be overwritten.
phi_2tube=zeros(1,1024); // this will be overwritten.
//
// others
WT_QTY=2; // WT_QTY=2: standard 2 tubes model
N_REPEAT=7; // how many section to generate waveform ?
Wtubepropdat= 'tubeprop.dat';
//
//
//--------------------------------------------------------------------------
function save_2tube()
save(Wtubepropdat,L1,L2,L3,A1,A2,A2,ttl_Length,ttl_Area,l1,l2,rg,r1,r2,fc,trise,tfall,tclosed,yg_res1,tube2_res1,hpf_res1,overall_res1,db_2tube,phi_2tube,WT_QTY);
endfunction
function
[L1,L2,L3,A1,A2,A3,ttl_Length,ttl_Area,l1,l2,rg,r1,r2,fc,trise,tfall,tclosed,yg_res1,tube2_res1,hpf_res1,overall_res1,db_2tube,phi_2tube,WT_QTY]=load_2tube()
load(Wtubepropdat,'L1','L2','L3','A1','A2','A3','ttl_Length','ttl_Area','l1','l2','rg','r1','r2','fc','trise','tfall','tclosed','yg_res1','tube2_res1','hpf_res1','overall_res1','db_2tube','phi_2tube','WT_QTY');
endfunction
//
function [WT_QTY]= set_tube_model()
l1=list('model',(WT_QTY-1),['2 tubes','3 tubes serial
type']);
//l1=list('model',1,['2 tubes']);
wrep=x_choices('Select tube model',list(l1));
//
if wrep== 1 then
WT_QTY=2;
elseif wrep== 2 then
WT_QTY=3;
end
endfunction
//
//-------------------------------------------------
function [r1,r2,l1,l2,ttl_Length,fc,trise,tfall,tclosed]=
set_2tube_para()
wstr1=sprintf('%f',r1);
wstr2=sprintf('%f',l1);
wstr3=sprintf('%f',ttl_Length);
wstr4=sprintf('%f',fc);
wstr5=sprintf('%f',trise);
wstr6=sprintf('%f',tfall);
wstr7=sprintf('%f',tclosed);
wstr8=sprintf('%f',r2);
wstr9=sprintf('%f',l2);
//
if WT_QTY == 3 then
txt1=['r1';'l1'; 'r2'; 'l2'; 'total_tube_Length'; 'fc'; 'trise';
'tfall' ; 'tclosed (use only for generation)'];
sig1=x_mdialog('Input parameters',txt1, [wstr1 ; wstr2 ; wstr8 ;
wstr9; wstr3 ; wstr4; wstr5; wstr6; wstr7 ]);
if sig1==[] then
r1=evstr(wstr1);
l1=evstr(wstr2);
r2=evstr(wstr8);
l2=evstr(wstr9);
ttl_Length=evstr(wstr3);
fc=evstr(wstr4);
trise=evstr(wstr5);
tfall=evstr(wstr6);
tclosed=evstr(wstr7);
else
r1=evstr(sig1(1));
l1=evstr(sig1(2));
r2=evstr(sig1(3));
l2=evstr(sig1(4));
ttl_Length=evstr(sig1(5));
fc=evstr(sig1(6));
trise=evstr(sig1(7));
tfall=evstr(sig1(8));
tclosed=evstr(sig1(9));
end
else
txt1=['r1';'l1'; 'total_tube_Length'; 'fc'; 'trise'; 'tfall' ;
'tclosed (use only for generation)'];
sig1=x_mdialog('Input parameters',txt1, [wstr1 ; wstr2 ; wstr3 ;
wstr4; wstr5; wstr6; wstr7 ]);
if sig1==[] then
r1=evstr(wstr1);
l1=evstr(wstr2);
ttl_Length=evstr(wstr3);
fc=evstr(wstr4);
trise=evstr(wstr5);
tfall=evstr(wstr6);
tclosed=evstr(wstr7);
r2=evstr(wstr8);
l2=evstr(wstr9);
else
r1=evstr(sig1(1));
l1=evstr(sig1(2));
ttl_Length=evstr(sig1(3));
fc=evstr(sig1(4));
trise=evstr(sig1(5));
tfall=evstr(sig1(6));
tclosed=evstr(sig1(7));
r2=evstr(wstr8);
l2=evstr(wstr9);
end
end
endfunction
//
// Function plot sqrt(area) vs length
function plot_area(disp0)
wb0=xget('window'); // stack old window
xset('window',disp0); // create new windows
//
if f412 == 1 then
arrowsize1=20;
else
arrowsize1=1;
end
clf();
plot2d(0,0,1,"010","",[-5,-10,30,10],[5,5,4,5]); // wake wo egaku
if WT_QTY == 4 then //Three Tubes Model of T type
ya1=sqrt(A1);
ya2=sqrt(A2);
ya3=sqrt(A3);
if ya2 > ya1 then
yy0=ya2;
else
yy0=ya1;
end
yy0=10- (yy0 * 2);
// Area scale is double than other Tube Models.
yy1=ya1 + yy0;
yy2=ya2 + yy0;
yy3=yy0 - L3;
xx1=L1 - (ya3 / 2);
xx2=L1 + (ya3 / 2);
xp=[0 0 xx1 xx1
xx2 xx2 L1+L2 L1+L2 L1 L1 0
]';
yp=[yy1 yy0 yy0 yy3 yy3
yy0
yy0
yy2
yy2 yy1 yy1]';
xpolys( xp, yp, [5 5 5 5 5 5 5 5 5 5 5] );
xar=[-2 -0.5];
yar=[yy0+ ( ya1 / 2 ) yy0+ ( ya1 / 2 ) ];
xarrows(xar, yar, arrowsize1, 5);
yar=[yy0 + ( ya2 / 2 ) yy0+ ( ya2 / 2 ) ];
xar=[ L1+L2+0.5 L1+L2+2];
xarrows(xar, yar, arrowsize1, 5);
xstring(xx1, yy3 - 1, "CLOSED");
xstring(0,-9,"Attension: Area scale is double than others Tube Models");
//
elseif WT_QTY == 3 then //Three Tubes Model of serial type
ya1=sqrt(A1);
ya2=sqrt(A2);
ya3=sqrt(A3);
xp=[0 0 L1 L1 L1+L2 L1+L2
L1+L2+L3 L1+L2+L3 L1+L2 L1+L2 L1 L1 0 ]';
yp=[ya1 -ya1 -ya1
-ya2
-ya2 &
-ya3
-ya3 &
ya3
ya3
ya2
ya2 ya1 ya1 ]';
xpolys( xp, yp, [5 5 5 5 5 5 5 5 5 5 5 5] );
xar=[-2 -0.5];
yar=[0 0];
xarrows(xar, yar, arrowsize1, 5);
xar=[ L1+L2+L3+0.5 L1+L2+L3+2];
xarrows(xar, yar, arrowsize1, 5);
else //Two Tubes Model
ya1=sqrt(A1 );
ya2=sqrt(A2 );
xp=[0 0 L1 L1
L1+L2 L1+L2 L1 L1 0 ]';
yp=[ya1 -ya1 -ya1
-ya2
-ya2 &
ya2
ya2 ya1 ya1 ]';
xpolys( xp, yp, [5 5 5 5 5 5 5 5] );
xar=[-2 -0.5];
yar=[0 0];
xarrows(xar, yar, arrowsize1, 5);
xar=[ L1+L2+0.5 L1+L2+2];
xarrows(xar, yar, arrowsize1, 5);
if WT_QTY==5 then
xar=[ L1+L2-0.5 L1+L2-2];
xarrows(xar, yar, arrowsize1, 3);
end
end
xset('window',wb0); // push old windows
endfunction
//
//-------------------------------------------------
// +hpf
function [hpf_res1]=hpf_response( point0)
wc=2. * %pi * fc;
al1= -1. * %e^( -1. * wc * ts);
bl0= wc * ts;
// Then, convert them to high pass filter's coefficients
fnew=fc;
wcnew=2. * %pi * fnew;
alfa= -1. * cos( (wc + wcnew) * ts /2. ) / cos( (wc - wcnew) * ts
/ 2. );
// high pass filter's coefficients
bh0= bl0 / (1.0 - al1 * alfa);
bh1= alfa * bl0 / (1.0 - al1 * alfa);
ah1= (alfa - al1) / (1.0 - al1 * alfa);
// Function for disply high pass filter's frequency-phase response
[frq1,sfrq1,is1,ie1]=set_frq(point0);
hpf_res1=zeros(1,sfrq1);
for v=1:sfrq1
xw=2 * %pi * frq1(v);
yi= bh0 + bh1 * cos( xw * ts) - bh1 * sin( xw * ts ) * %i;
yb=1.0 + ah1 * cos( xw * ts ) - ah1 * sin( xw *
ts ) * %i;
hpf_res1(v)= yi /yb;
end
endfunction
// -hpf
//----------------------------------------------------------
//
//
function [ tube2_res1, L1, L2, L3, A1, A2, A3]= two_tubes2_resp()
if WT_QTY==3 then
//
// 3 tubes model definition
//
// L1+L2+L3 = ttl_Length (total tubes length)
//
// l1= (L2-L1)/(L2+L1)
// l2= (L3-L2)/(L3+L2)
//
// A1+A2+A3= ttl_Area
//
// r1= (A2-A1)/(A2+A1)
// r2= (A3-A2)/(A3+A2)
//
bunbo= l1 * l2 + ( l1 - l2 ) + 3.0;
L1= ttl_Length * ( l2 - 1.0 ) * (l1 - 1.0 ) / bunbo ;
L2= ttl_Length * ( l2 - 1.0 ) * ( -1.0 * l1 - 1.0 ) / bunbo ;
L3= ttl_Length * ( l2 + 1.0 ) * (l1 + 1.0 ) / bunbo ;
tu1=L1/c0;
tu2=L2/c0;
tu3=L3/c0;
bunbo= r1 * r2 + ( r1 - r2 ) + 3.0;
A1= ttl_Area * ( r2 - 1.0 ) * (r1 - 1.0 ) / bunbo ;
A2= ttl_Area * ( r2 - 1.0 ) * ( -1.0 * r1 - 1.0 ) / bunbo ;
A3= ttl_Area * ( r2 + 1.0 ) * (r1 + 1.0 ) / bunbo ;
[frq1,sfrq1,is1,ie1]=set_frq(1024);
tube2_res1=zeros(1,sfrq1);
for v=1:sfrq1
xw= 2 * %pi * frq1(v);
//+
yi = 0.5 * ( 1. + rg ) * ( 1. + r1) * ( 1. + r2) * (
1. + rl ) * %e^( -1. * ( tu1 + tu2 + tu3) * xw * %i);
yb = 1 + rg * r1 * %e^( -2 * tu1 * xw * %i) + r1 *
r2 * %e^( -2 * tu2 * xw * %i) + r2 * rl * %e^( -2 * tu3 * xw * %i);
yb = yb + rg * r2 * %e^( -2 * (tu1 + tu2) * xw * %i) + r1
* rl * %e^( -2 * (tu2 + tu3) * xw * %i);
yb = yb + rg * r1 * r2 * rl * %e^( -2 * (tu1 + tu3)
* xw * %i);
yb = yb + rg * rl * %e^( -2 * (tu1 + tu2 + tu3) * xw
* %i);
tube2_res1(v) = yi / yb;
//-
end
else
L2= ( 1. + l1 ) * ttl_Length / 2.;
L1= ttl_Length - L2;
tu1=L1/c0;
tu2=L2/c0;
A2= ( 1. + r1 ) * ttl_Area/ 2.;
A1= ttl_Area - A2;
//
[frq1,sfrq1,is1,ie1]=set_frq(1024);
tube2_res1=zeros(1,sfrq1);
for v=1:sfrq1
xw= 2 * %pi * frq1(v);
yi = 0.5 * ( 1 + rg ) * ( 1 + r1) * ( 1 + rl ) *
%e^( -1 * ( tu1 + tu2 ) * xw * %i);
yb = 1 + r1 * rg * %e^( -2 * tu1 * xw * %i) + r1 * rl *
%e^( -2 * tu2 * xw * %i) + rl * rg * %e^( -2 * (tu1 + tu2) * xw * %i);
tube2_res1(v) = yi / yb;
end
// +dummy data set
L3=1;
A3=1;
// -dummy data set
end
endfunction
//
// +yg response
function [yg_res1]=yg_resp(points)
N2= int( trise / 1000 / ts);
N3= int( tfall / 1000 / ts);
sizew=max((N2+N3+1),points);
yg=zeros(1,sizew);
//
for tc0=1:sizew
if tc0 <= (N2+1) then
yg(tc0)= 0.5 * ( 1 - cos( ( %pi / N2 ) * (tc0 - 1) )
);
elseif tc0<= (N2+N3+1) then
yg(tc0)= cos( ( %pi / ( 2 * N3 )) * ( tc0 - (N2+1) ) );
else
yg(tc0)=0.0;
end
end
[frq1,sfrq1,is1,ie1]=set_frq(points);
yg_res1=zeros(1,sfrq1);
// +do points(1024) fft and get portion of data
if sizew == points then
fftwout=fft( yg, -1 );
v=1;
is2= int(is1 * points / fft_point1);
ie2= int(ie1 * points / fft_point1);
for w=is2:ie2
yg_res1(v)=fftwout(is2+v) / fftwout(1);
v=v+1;
end
else // -do 1024 fft and get portion of data
//
y00=0.;
for v=1:(N2+N3+1)
y00= y00 + yg(v);
end
//
for w=1:sfrq1
xw=2 * %pi * frq1(w) * ts;
yi=0;
for v=1:(N2+N3+1)
yi= yi + yg(v) * %e^(-1. * xw * (v-1) * %i);
end // for v
yg_res1(w)=yi / y00;
end // for w
end
endfunction
// -yg response
//-------------------------------------------------
//
function [overall_res1,db_2tube, phi_2tube ]=overall_response()
[frq1,sfrq1,is1,ie1]=set_frq(1024);
for v=1:sfrq1
overall_res1(v)= hpf_res1(v) * tube2_res1(v) * yg_res1(v) ;
end
[db_2tube,phi_2tube] =dbphi(overall_res1);
endfunction
//-----------------------------------------------
function plot_2tube(disp0, kcode)
//
When kcode =0, normal, beside kcode=1, leastsq result
wb0=xget('window'); // stack old window
xset('window',disp0); // create new windows
[frq1,sfrq1,is1,ie1]=set_frq(0);
clf();
subplot(211);
gainplot(frq1,db_fft1,phi_fft1);
xtitle('frequency response of waveform selected by fft analysis');
[frq1,sfrq1,is1,ie1]=set_frq(1024);
subplot(212);
gainplot(frq1,db_2tube',phi_2tube');
if kcode == 0 then
xtitle('frequency response of tubes model by initial value for
comparison to one of waveform selected by fft analysis ');
elseif kcode == 1 then
xtitle('frequency response of tubes model by leastsq method
result from the initial value');
elseif kcode == 3 then
wstr0=' frequency response of tubes model';
wstr1=sprintf('%f',l1);
wstr2=sprintf('%f',r1);
wstr3=sprintf('%f',l2);
wstr4=sprintf('%f',r2);
if WT_QTY == 3 then
wstr5='l1=' + wstr1 + ' r1=' + wstr2 + ' l2='
+ wstr3 + ' r2=' + wstr4 + wstr0;
else // when WT_QTY == 2 then
wstr5='l1=' + wstr1 + ' r1=' + wstr2 + wstr0;
end
xtitle(wstr5);
end
xset('window',wb0); // push old windows
endfunction
//
//=================================================================
//
// +MAIN (3)program starts
// about matching to 2 tubes model
if T_DEMO==1 then
trise=6.0; // just fit for 1st demo version
tfall=0.7; // just fit for 1st demo version
if SEL_CODE == 1 then // a_sample
WT_QTY=2;
r1=0.8;
l1=0.;
ttl_Length=18.5;
elseif SEL_CODE == 2 then // o_sample
WT_QTY=3;
r1=-0.5;
l1=0.5;
r2=0.8;
l2=0.;
ttl_Length=23.;
else // include SEL_CODE == 999
[WT_QTY]= set_tube_model();
[r1,r2,l1,l2,ttl_Length,fc,trise,tfall,tclosed]=
set_2tube_para();
end
[yg_res1]=yg_resp(1024);
[ tube2_res1, L1, L2, L3, A1, A2, A3 ]= two_tubes2_resp();
[hpf_res1]=hpf_response(1024);
[overall_res1,db_2tube, phi_2tube ]=overall_response();
plot_2tube(3,0);
end
//
// -MAIN (3)program starts
//
//==============================================================++=
//
//
//-----------------------------------------------------------------
// global variables No. 3
//
yg= zeros(1,1024); // this will be overwritten.
y2tm= zeros(1,1024); // this will be overwritten.
y3out= zeros(1,1024); // this will be overwritten.
// other
amplitude= ones(1,2); // this will maybe be overwritten.
Wy3out_filename='dummy.wav';
//---------------------------------------------------------
function [N_REPEAT]= set_section_qty()
txt1=['sections quantity'];
wstr1=sprintf('%f',N_REPEAT);
sig1=x_mdialog('How many sections to generate',txt1, [wstr1]);
N_REPEAT=int(evstr(sig1(1)));
endfunction
//---------------------------------------------------------
function [yg,y2tm,y3out]= make_waveform()
L1z=zeros(1,N_REPEAT);
L2z=zeros(1,N_REPEAT);
L3z=zeros(1,N_REPEAT);
A1z=zeros(1,N_REPEAT);
A2z=zeros(1,N_REPEAT);
A3z=zeros(1,N_REPEAT);
trisez=zeros(1,N_REPEAT);
tfallz=zeros(1,N_REPEAT);
tclosedz=zeros(1,N_REPEAT);
amplitudez=ones(1,N_REPEAT);
for v=1:N_REPEAT
L1z(v)=L1;
L2z(v)=L2;
L3z(v)=L3;
A1z(v)=A1;
A2z(v)=A2;
A3z(v)=A3;
trisez(v)=trise;
tfallz(v)=tfall;
tclosedz(v)=tclosed;
end
//
if WT_QTY == 3 then //Three Tubes Model of serial type
tu1=L1z./c0; // delay time in 1st tube
tu2=L2z./c0; // delay time in 2nd tube
tu3=L3z./c0; // delay time in 3rd tube
r1z=(A2z-A1z)./(A2z+A1z); // reflection coefficient between
1st tube and 2nd tube
r2z=(A3z-A2z)./(A3z+A2z); // reflection coefficient between
2nd tube and 3rd tube
elseif WT_QTY == 4 then //Three Tubes Model of T type
tu1=L1z./c0; // delay time in 1st tube
tu2=L2z./c0; // delay time in 2nd tube
tu3=L3z./c0; // delay time in 3rd tube
r12z=((A2z+A3z)-A1z)./(A3z+A2z+A1z); // reflection
coefficient between 1st tube and others
r21z=(A2z-(A1z+A3z))./(A3z+A2z+A1z); // reflection
coefficient between 2nd tube and others
r31z=(A3z-(A1z+A2z))./(A3z+A2z+A1z); // reflection
coefficient between 3rd tube and others
else
//Two Tubes Model
tu1=L1z./c0; // delay time in 1st tube
tu2=L2z./c0; // delay time in 2nd tube
r1z=(A2z-A1z)./(A2z+A1z); // reflection coefficient between
1st tube and 2nd tube
end
//
disp('+++enter step 1 Input Glottal Volume Velocity
Generation');
D_QTY=N_REPEAT;
length0=0;
N1= zeros(1, D_QTY);
N2= zeros(1, D_QTY);
N3= zeros(1, D_QTY);
LL= zeros(1, D_QTY);
for loop=1:D_QTY
N1(loop)= int( tclosedz(loop) / 1000 / ts );
N2(loop)= int( trisez(loop) / 1000 / ts);
N3(loop)= int( tfallz(loop) / 1000 / ts);
LL(loop)= N1(loop)+N2(loop)+N3(loop);
length0 = length0 + LL(loop);
end
// yg is Glottal Volume Velocity. rg is reflection coefficient
between glottis and 1st tube
// reflection coefficient between glottis and 1st tube
rg_rise=0.9; // set some value (1. or
less) when glottis is opening
rg_fall=0.95; // set some value (1. or less)
when glottis is closing
rg_closed=rg; // When glottis is closed,
// reflection coefficient between glottis and 1st tube is 1
// because glottis's gate is closed and vocal tract is free from
glottis's influence
yg= zeros(1,length0+1);
rgz= zeros(1,length0+1);
tc0=1;
yg(tc0)=0.;
yg(tc0)=amplitudez(1) * yg(tc0);
for loop=1:D_QTY
for t0=1:int(LL(loop))
tc0=tc0+1;
if t0 < N1(loop) then
yg(tc0) =0;
rgz(tc0)=rg_closed;
elseif t0 <= (N2(loop) + N1(loop)) then
yg(tc0)= 0.5 * ( 1 - cos( ( %pi / N2(loop) ) * (t0 -
N1(loop)) ) );
rgz(tc0)=rg_rise;
elseif t0 <= (N3(loop)+N2(loop)+N1(loop)) then
yg(tc0)= cos( ( %pi / ( 2 * N3(loop) )) * ( t0 -
(N2(loop)+N1(loop)) ) );
rgz(tc0)=rg_fall;
else
yg(tc0) =0;
rgz(tc0)=rg_closed;
end
yg(tc0)=amplitudez(loop) * yg(tc0);
end // t0
end // loop
//
//
if WT_QTY == 3 then //Three Tubes Model of serial type
disp('+++enter step 2 Three Tubes Model of serial type for
Vocal Tract Calculation');
// yt is output of Two Tubes Model for Vocal Tract
M1= zeros(1, D_QTY);
M2= zeros(1, D_QTY);
M3= zeros(1, D_QTY);
y2tm= zeros(1,length0+1);
for loop=1:D_QTY
M1(loop)= int( tu1(loop) / ts ) + 1;
M2(loop)= int( tu2(loop) / ts ) + 1;
M3(loop)= int( tu3(loop) / ts ) + 1;
end
MAX_M1=M1(1);
MAX_M2=M2(1);
MAX_M3=M3(1);
for loop=1:D_QTY
if M1(loop) > MAX_M1 then
MAX_M1= M1(loop)
end
if M2(loop) > MAX_M2 then
MAX_M2= M2(loop)
end
if M3(loop) > MAX_M3 then
MAX_M3= M3(loop)
end
end
ya1= zeros(1,MAX_M1);
ya2= zeros(1,MAX_M1);
yb1= zeros(1,MAX_M2);
yb2= zeros(1,MAX_M2);
yc1= zeros(1,MAX_M3);
yc2= zeros(1,MAX_M3);
tc0=1;
ya1(tc0)=0.;
ya2(tc0)=0.;
yb1(tc0)=0.;
yb2(tc0)=0.;
yc1(tc0)=0.;
yc2(tc0)=0.;
y2tm(tc0)=0.;
for loop=1:D_QTY
for t0=1:int(LL(loop))
tc0=tc0+1;
for jl=MAX_M1:-1:2
ya1(jl)=ya1(jl-1);
ya2(jl)=ya2(jl-1);
end
for jl=MAX_M2:-1:2
yb1(jl)=yb1(jl-1);
yb2(jl)=yb2(jl-1);
end
for jl=MAX_M3:-1:2
yc1(jl)=yc1(jl-1);
yc2(jl)=yc2(jl-1);
end
ya1(1)= ((1. + rgz(tc0) ) / 2.) * yg(tc0) + rgz(tc0) *
ya2(M1(loop));
ya2(1)= -1. * r1z(loop) * ya1(M1(loop)) + ( 1. -
r1z(loop) ) * yb2(M2(loop));
yb1(1)= ( 1 + r1z(loop) ) * ya1(M1(loop)) + r1z(loop) *
yb2(M2(loop));
yb2(1)= -1. * r2z(loop) * yb1(M2(loop)) + ( 1. -
r2z(loop) ) * yc2(M3(loop));
yc1(1)= ( 1 + r2z(loop) ) * yb1(M2(loop)) + r2z(loop) *
yc2(M3(loop));
yc2(1)= -1. * rl * yc1(M3(loop));
y2tm(tc0)= (1 + rl) * yc1(M3(loop));
end // t0
end //loop
else //Two Tubes Model
disp('+++enter step 2 Two Tubes Model for Vocal Tract
Calculation');
// yt is output of Two Tubes Model for Vocal Tract
M1= zeros(1, D_QTY);
M2= zeros(1, D_QTY);
y2tm= zeros(1,length0+1);
for loop=1:D_QTY
M1(loop)= int( tu1(loop) / ts ) + 1;
M2(loop)= int( tu2(loop) / ts ) + 1;
end
MAX_M1=M1(1);
MAX_M2=M2(1);
for loop=1:D_QTY
if M1(loop) > MAX_M1 then
MAX_M1= M1(loop)
end
if M2(loop) > MAX_M2 then
MAX_M2= M2(loop)
end
end
ya1= zeros(1,MAX_M1);
ya2= zeros(1,MAX_M1);
yb1= zeros(1,MAX_M2);
yb2= zeros(1,MAX_M2);
tc0=1;
ya1(tc0)=0.;
ya2(tc0)=0.;
yb1(tc0)=0.;
yb2(tc0)=0.;
y2tm(tc0)=0.;
for loop=1:D_QTY
for t0=1:int(LL(loop))
tc0=tc0+1;
for jl=MAX_M1:-1:2
ya1(jl)=ya1(jl-1);
ya2(jl)=ya2(jl-1);
end
for jl=MAX_M2:-1:2
yb1(jl)=yb1(jl-1);
yb2(jl)=yb2(jl-1);
end
ya1(1)= ((1. + rgz(tc0) ) / 2.) * yg(tc0) + rgz(tc0) *
ya2(M1(loop));
ya2(1)= -1. * r1z(loop) * ya1(M1(loop)) + ( 1. -
r1z(loop) ) * yb2(M2(loop));
yb1(1)= ( 1 + r1z(loop) ) * ya1(M1(loop)) + r1z(loop) *
yb2(M2(loop));
yb2(1)= -1. * rl * yb1(M2(loop));
y2tm(tc0)= (1 + rl) * yb1(M2(loop));
end // t0
end //loop
end //End of Two Tubes model
//
disp('+++enter step 3 Output Sound Pressure for Two Tubes Model
for Vocal Tract Calculation');
// At first, low pass filter's coefficients
wcz=2. * %pi * fc;
al1= -1. * %e^( -1. * wcz * ts);
bl0= wcz * ts;
wc_org=wcz;
wc_new=2. * %pi * fc;
alfa=-1. * cos( (wc_org + wc_new) * ts /2. ) / cos( (wc_org
- wc_new) * ts / 2. );
// high pass filter's coefficients
bh0= bl0 / (1.0 - al1 * alfa);
bh1= alfa * bl0 / (1.0 - al1 * alfa);
ah1= (alfa - al1) / (1.0 - al1 * alfa);
// IIR type high pass filter
y3out= zeros(1,length0+1);
LI1=2;
LI2=2;
ya1= zeros(1,LI1);
yb1= zeros(1,LI2);
//loop
for loop=1:length0
ya1(LI1)=ya1(1);
yb1(LI2)=yb1(1);
ya1(1)=y2tm(loop);
yb1(1)= bh0 * ya1(1) + bh1 * ya1(LI1) - ah1 * yb1(LI2);
y3out(loop)=yb1(1);
end //loop
disp('--- Waveform Generation finished.');
endfunction // end ofmake_waveform()
//----------------------------------------------------------
function y3out_snd_play1()
// this sound doesnot work well on windows scilab-3.1.1 and linux
scilab-3.1
// but, this sound works on windows scilab-4.1.2. But, linux
scilab-4.1.2 doesnot!
sy3out=size(y3out);
y3outz=zeros(sy3out(2));
vm0=abs(y3out(1));
for v=1:sy3out(2)
if abs(y3out(v)) > vm0 then
vm0=abs(y3out(v));
end
end
if vm0 > 0 then
for v=1:sy3out(2)
y3outz(v)= y3out(v) / vm0;
end
end
if f_win == 1 then
if f412 == 1 then // for windows scilab-4.1.2
sound(y3outz' ,fs1,bit1);
else
// for windows scilab-3.1.1
if fs1 == 22050 then
sound(y3outz,fs1,bit1);
disp('This function may work, if luckily.');
elseif fs1 == 44100 then // down-sampling from
44100 to 22050
wdatw2=zeros((sy3out(2)/2));
for v=1:(sy3out(2)/2)
wdatw2(v)=y3outz(2 * (v -1) +1);
end
disp('down-sampling from 44100 to 22050');
sound(wdatw2,22050,bit1);
disp('This function may work, if luckily.');
else
//sound(wdatw,fs1,bit1);
disp('This function does not work.');
end
end
else
disp('If sound setting is good for scilab, this function maybe
work.');
if f412 == 1 then // for scilab-4.1.2
sound(y3outz' ,fs1,bit1);
else
// for scilab-3.1.1
if f511== 1 then // for windows scilab-5.1.1
sound(wdat2',fs1,bit1);
else
if fs1 == 22050 then
sound(y3outz,fs1,bit1);
disp('This function may work, if luckily.');
elseif fs1 == 44100 then //
down-sampling from 44100 to 22050
wdatw2=zeros((sy3out(2)/2));
for v=1:(sy3out(2)/2)
wdatw2(v)=y3outz(2 * (v -1) +1);
end
disp('down-sampling from 44100 to
22050');
sound(wdatw2,22050,bit1);
disp('This function may work, if
luckily.');
else
//sound(wdatw,fs1,bit1);
disp('This function does not work.');
end
end
end
end
endfunction
//---------------------------------------------------------
function y3out_snd_save1()
//
wavefilename= input(' + enter file name for saved .wav file
=>',["string"]);
//
sy3out=size(y3out);
y3outz=zeros(sy3out(2));
vm0=abs(y3out(1));
for v=1:sy3out(2)
if abs(y3out(v)) > vm0 then
vm0=abs(y3out(v));
end
end
if vm0 > 0 then
for v=1:sy3out(2)
y3outz(v)= y3out(v) / vm0;
end
end
//
if f412 == 1 then // for windows scilab-4.1.2
wavwrite(y3outz' ,fs1,bit1,wavefilename );
else
// for windows scilab-3.1.1
wavwrite(y3outz, fs1,bit1, wavefilename);
end
endfunction
//---------------------------------------------------------
function plot_waveform(disp0)
wb0=xget('window'); // stack old window
xset('window',disp0); // create new windows
clf();
if f412 == 1 then
plot(yg,'b');
plot(y3out,'r');
xtitle('generated wave by tubes model','Samples (Time)',
'Amplitude');
legend('Glottal Volume Velocity','Sound Pressure',2);
elseif f_win == 1 then
plot(yg,'b');
plot(y3out,'r');
xtitle('generated wave by tubes model','Samples (Time)',
'Amplitude');
legend('Glottal Volume Velocity','Sound Pressure',2);
else
ygs=size(yg);
xzikur=[1:1:ygs(2)];
//plot2d(xzikur,yg,style=[color("blue")]);
plot2d(xzikur,y3out,style=[color("red")]);
xtitle('generated wave by tubes model','Samples (Time)',
'Amplitude');
//legend('Glottal Volume Velocity','Sound Pressure',2);
end
xset('window',wb0); // push old windows
endfunction
//
//=================================================================
//
// +MAIN (5)program starts
// generation waveform
if T_DEMO==1 then
[yg,y2tm,y3out]= make_waveform();
plot_waveform(5);
end
//
// -MAIN (5)program starts
//
//==============================================================++=
//
//
//F_DUMP=0;
//if F_DUMP == 1 then
//// r1m=[-0.9:0.1:0.9];
//// l1m=[-0.8:0.1:0.8];
// r1m=[-0.5:0.5:0.5];
// l1m=[-0.5:0.5:0.5];
// sr1m=size(r1m);
// sl1m=size(l1m);
// //
// for v1=1:sr1m(2)
// for v2=1:sl1m(2)
// noz= (r1m(v1)+1.0) * 100.;
// noz= noz + (l1m(v2)+1.0) * 10000.;
// wstr1=sprintf('./wavdat/%i.wav',noz);
// wstr2=sprintf('./wavdat/%i.dat',noz);
// disp( wstr1);
// //
// r1=r1m(v1);
// l1=l1m(v2);
// [yg_res1]=yg_resp(1024);
// [ tube2_res1, L1, L2, L3, A1, A2, A3 ]=
two_tubes2_resp();
// [hpf_res1]=hpf_response(1024);
// [overall_res1,db_2tube, phi_2tube
]=overall_response();
// Wtubepropdat= wstr2;
// save_2tube();
// //
// [yg,y2tm,y3out]= make_waveform();
// Wy3out_filename=wstr1;
// y3out_snd_save1();
// end
// end
//end // if F_DUMP == 1 then
//
//-----------------------------------------------------------------
//=================================================================
//
// refrence: db_fft1 ,portion of fft point
fft_point1(=default value is 512)
// tube output: db_2tube ,portion of fft point
1024
//
//-----------------------------
// global
yg_res9=zeros(2,1); // dummy set
hpf_res9=zeros(2,1); // dummy set
wm8=ones(2,1); //
dummy set
tm8=ones(2,1); //
dummy set
x_init8=zeros(2,1); // dummy set
xopt=zeros(2,1); // dummy set
ym8=zeros(2,1); //
dummy set
ma0=['ttl_Length ' ;
'l1 ' ;
'r1 ' ;
'l2 ' ;
'r2 '];
//----------------------------------------------------------------
function [wm8, tm8, ym8, x_init8]=prepare8()
[frq1,sfrq1,is1,ie1]=set_frq(fft_point1);
wm8=ones(sfrq1,1);
ym8=zeros(sfrq1,1);
tm8=zeros(sfrq1,1);
for v=1:sfrq1
tm8(v)= 2 * %pi * frq1(v);
ym8(v)=db_fft1(v);
end
//.
if WT_QTY == 3 then
// when 3 tube model serial
x_init8=zeros(5,1);
x_init8(1,1)=ttl_Length;
x_init8(2,1)=l1;
x_init8(3,1)=r1;
x_init8(4,1)=l2;
x_init8(5,1)=r2;
else
// when 2 tube model
x_init8=zeros(3,1);
x_init8(1,1)=ttl_Length;
x_init8(2,1)=l1;
x_init8(3,1)=r1;
end
disp(' + prepare8 done');
endfunction
//----------------------------------------------------------------
function [yg_res9, hpf_res9]=prepare9()
yg_res9=yg_resp(fft_point1)';
hpf_res9=hpf_response(fft_point1)';
disp(' + prepare9 done');
endfunction
//-----------------------------------------------------------------
function [r1,r2,l1,l2,ttl_Length]=exchange8() // set leastsq
result as tube paras
ttl_Length=xopt(1);
l1=xopt(2);
r1=xopt(3);
if WT_QTY == 3 then
l2=xopt(4);
r2=xopt(5);
else
l2=0; // dummy set
r2=0.8; // dummy set
end
endfunction
function [r1,r2,l1,l2,ttl_Length]=exchange9() // set initial
value as tube paras
ttl_Length=x_init8(1);
l1=x_init8(2);
r1=x_init8(3);
if WT_QTY == 3 then
l2=x_init8(4);
r2=x_init8(5);
else
l2=0; // dummy set
r2=0.8; // dummy set
end
endfunction
//-----------------------------------------------------------------
// y = tube2_resp9(tm8, x_init8)
//
// [frq1,sfrq1,is1,ie1]=set_frq(fft_point1);
// clf();
// subplot(211);
// gainplot(frq1,y,phi_fft1);
//
function y = tube2_resp9(xw, pa) // when 2 tube model
L2= ( 1. + pa(2)) * pa(1) / 2.; // L2= ( 1. +
l1 ) * ttl_Length / 2.;
L1= pa(1) -
L2;
// L1= ttl_Length - L2;
tu1=L1/c0;
tu2=L2/c0;
A2= ( 1. + pa(3)) * ttl_Area/ 2.; // A2= ( 1. + r1 ) *
ttl_Area/ 2.;
A1= ttl_Area - A2;
yi = 0.5 * ( 1 + rg ) * ( 1 + pa(3)) * ( 1 +
rl ) * %e^( -1 * ( tu1 + tu2 ) .* xw * %i);
yb = 1 + pa(3) * rg * %e^( -2 * tu1 .* xw * %i) +
pa(3) * rl * %e^( -2 * tu2 .* xw * %i) + rl * rg * %e^( -2 * (tu1 +
tu2) .* xw * %i);
yc = yg_res9 .* hpf_res9 .* ( yi ./ yb) ;
y = 20. * log10(abs(yc));
endfunction
//--------------------------------
// y = tube3_resp9(tm8, x_init8)
//
// [frq1,sfrq1,is1,ie1]=set_frq(fft_point1);
// clf();
// subplot(211);
// gainplot(frq1,y,phi_fft1);
function y = tube3_resp9(xw, pa) // when 3 tube model serial
bunbo= pa(2) * pa(4) + ( pa(2) - pa(4) ) + 3.0; // bunbo=
l1 * l2 + ( l1 - l2 ) + 3.0;
L1= pa(1) * ( pa(4) - 1.0 ) * (pa(2) - 1.0 ) / bunbo ; // L1=
ttl_Length * ( l2 - 1.0 ) * (l1 - 1.0 ) / bunbo ;
L2= pa(1) * ( pa(4) - 1.0 ) * ( -1.0 * pa(2) - 1.0 ) / bunbo ;
// L2= ttl_Length * ( l2 - 1.0 ) * ( -1.0 * l1 - 1.0 ) / bunbo ;
L3= pa(1) * ( pa(4) + 1.0 ) * (pa(2) + 1.0 ) / bunbo ; // L3=
ttl_Length * ( l2 + 1.0 ) * (l1 + 1.0 ) / bunbo ;
tu1=L1/c0;
tu2=L2/c0;
tu3=L3/c0;
bunbo= pa(3) * pa(5) + ( pa(3) - pa(5) ) + 3.0; // bunbo= r1 *
r2 + ( r1 - r2 ) + 3.0;
A1= ttl_Area * ( pa(5) - 1.0 ) * (pa(3) - 1.0 ) / bunbo ; // A1=
ttl_Area * ( r2 - 1.0 ) * (r1 - 1.0 ) / bunbo ;
A2= ttl_Area * ( pa(5) - 1.0 ) * ( -1.0 * pa(3) - 1.0 ) / bunbo
; // A2= ttl_Area * ( r2 - 1.0 ) * ( -1.0 * r1 - 1.0 ) / bunbo ;
A3= ttl_Area * ( pa(5) + 1.0 ) * (pa(3) + 1.0 ) / bunbo ; // A3=
ttl_Area * ( r2 + 1.0 ) * (r1 + 1.0 ) / bunbo ;
yi = 0.5 * ( 1. + rg ) * ( 1. + pa(3)) * ( 1. +
pa(5)) * ( 1. + rl ) * %e^( -1. * ( tu1 + tu2 + tu3) .* xw * %i);
yb = 1 + rg * pa(3) * %e^( -2 * tu1 .* xw * %i) +
pa(3) * pa(5) * %e^( -2 * tu2 .* xw * %i) + pa(5) * rl * %e^( -2 * tu3
.* xw * %i);
yb = yb + rg * pa(5) * %e^( -2 * (tu1 + tu2) .* xw * %i) +
pa(3) * rl * %e^( -2 * (tu2 + tu3) .* xw * %i);
yb = yb + rg * pa(3) * pa(5) * rl * %e^( -2 * (tu1 +
tu3) .* xw * %i);
yb = yb + rg * rl * %e^( -2 * (tu1 + tu2 + tu3) .*
xw * %i);
yc = yg_res9 .* hpf_res9 .* ( yi ./ yb) ;
y = 20. * log10(abs(yc));
endfunction
//-----------------------------------------------------------------
// e=myfun(x_init8, tm8, ym8, wm8)
function e = myfun(x, tm, ym, wm) // when 2 tube model
e = wm .*( tube2_resp9(tm, x) - ym )
endfunction
function e = myfun2(x, tm, ym, wm) // when 3 tube model
serial
e = wm .*( tube3_resp9(tm, x) - ym )
endfunction
//-----------------------------------------------------------------
function [fopt,xopt, grdopt]=leastsq_main1()
//
// 1- the simplest call
if WT_QTY == 3 then
// when 3 tube model serial
[fopt,xopt, grdopt] =
leastsq(list(myfun2,tm8,ym8,wm8),x_init8);
else
// when 2 tube model
[fopt,xopt, grdopt] =
leastsq(list(myfun,tm8,ym8,wm8),x_init8);
end
//... call
s0=size(xopt);
s0s=s0(1);
disp( 'initial value -> result value');
for v=1:s0s
wstr1=sprintf('%f',xopt(v));
wstr2=sprintf('%f',x_init8(v));
wstr3=' ' + ma0(v) + wstr2 + ' -> ' + wstr1;
disp(wstr3);
end
disp(' ');
endfunction
//
//=================================================================
//
// +MAIN (4)program starts
// leastsq method to estimate tube model parameters
if T_DEMO==1 then
disp(' ');
disp('a trial of leastsq method to estimate tube model
parameters.');
disp('*This evaluation by simple siguma |x(i)-y(i)|^2 between
spectrum may be a fault example to match this kind of pattern.');
disp(' ');
[wm8, tm8, ym8, x_init8]=prepare8();
[yg_res9, hpf_res9]=prepare9();
[fopt,xopt, grdopt]=leastsq_main1();
// set result value
[r1,r2,l1,l2,ttl_Length]=exchange8();
[yg_res1]=yg_resp(1024);
[ tube2_res1, L1, L2, L3, A1, A2, A3 ]= two_tubes2_resp();
[hpf_res1]=hpf_response(1024);
[overall_res1,db_2tube, phi_2tube ]=overall_response();
plot_2tube(4,1);
// back to initial value
[r1,r2,l1,l2,ttl_Length]=exchange9();
[yg_res1]=yg_resp(1024);
[ tube2_res1, L1, L2, L3, A1, A2, A3 ]= two_tubes2_resp();
[hpf_res1]=hpf_response(1024);
[overall_res1,db_2tube, phi_2tube ]=overall_response();
end
//
// -MAIN (4)program starts
//
//==============================================================++=
//
//
//
//
//=======$======&==========================#=====================
//
// Add menu buttons of which name are 'a_plotwav' and ''
//
ADD_MENU_PLOT=1; // set ADD_MENU 1
to add menu button of some functions
//
//
if ADD_MENU_PLOT == 1 then
delmenu('step1_plotwav');
addmenu('step1_plotwav',[ '(0)read_wav' ; '(1)set_et_plot()';
'reset_plot()'; 'load_wavprop()'; 'save_wavprop()']);
step1_plotwav=[
'[wavfile1,chs1,qty1,fs1,bit1,f412,SEL_CODE]=get_wavfile_pro();
disp_pro_wav(); [wdat1, size1]=read_one_ch_of_wav(wavfile1); sp1=1;
ep1=size1; [ydat0,xziku0]=make_width_data( wdat1, size1);' ; '[sp1,
ep1]= set_sp1_ep1(size1); [ydat1,xziku1]=make_width_data( wdat1,
size1); plot_wave1(0);' ; '[sp1, ep1]= reset_sp1_ep1(size1);
[ydat1,xziku1]=make_width_data( wdat1, size1);' ;
'[fs1,size1,bit1,wdat1,sp1,ep1,ydat0,ydat1,xziku0,xziku1]=load_wavprop();
plot_wave1(0)' ; 'save_wavprop()'] ;
end //if ADD_MENU_PLOT == 1 then
//
//-----------------------------------------------------------------
//
ADD_MENU_FFT=1; // set ADD_MENU 1
to add menu button of some functions
//
//
if ADD_MENU_FFT == 1 then
delmenu('step2_fft');
addmenu('step2_fft',[ '(1)set points'; '(2)fft cal'; 'load_wfft()';
'save_wfft()']);
step2_fft=[ '[fft_point1]=set_fft_points()' ; '[db_fft1,
phi_fft1]=do_fft_wav(); plot_fft1(1)';
'[fft_point1,db_fft1,phi_fft1]=load_wfft(); plot_fft1(1)' ;
'save_wfft()'] ;
end //if ADD_MENU_FFT == 1 then
//
//-----------------------------------------------------------------
//
ADD_MENU_TUBE2=1; // set ADD_MENU 1
to add menu button of some functions
//
//
if ADD_MENU_TUBE2 == 1 then
delmenu('step3_tubes');
addmenu('step3_tubes',[ '(1)set_tube_model()';
'(2)set_tube_initial_para()'; '(3)plot_tube_freq()'; 'plot_area(10)';
'load_tube()'; 'save_tube()'; 'plot_tube_freq_l1_r1']);
step3_tubes=[ '[WT_QTY]= set_tube_model()' ;
'[r1,r2,l1,l2,ttl_Length,fc,trise,tfall,tclosed]= set_2tube_para()';
'[yg_res1]=yg_resp(1024); [ tube2_res1, L1, L2, L3, A1, A2, A3 ]=
two_tubes2_resp(); [hpf_res1]=hpf_response(1024);
[overall_res1,db_2tube, phi_2tube ]=overall_response();
plot_2tube(3,0);' ; 'plot_area(10)';
'[L1,L2,L3,A1,A2,A3,ttl_Length,ttl_Area,l1,l2,rg,r1,r2,fc,trise,tfall,tclosed,yg_res1,tube2_res1,hpf_res1,overall_res1,db_2tube,phi_2tube,WT_QTY]=load_2tube();
plot_2tube(3,0);' ; 'save_2tube();' ; ' plot_2tube(3,3)'] ;
end //if ADD_MENU_TUBE2 == 1 then
//-----------------------------------------------------------------
//
ADD_MENU_LEASTSQURE=1; // set
ADD_MENU 1 to add menu button of some functions
//
//
if ADD_MENU_LEASTSQURE == 1 then
delmenu('step4_leastsq');
addmenu('step4_leastsq',[ '(1)do_leastsq' ; '(2)plot_freq' ;
'(3)set_result_as_initial_para']);
step4_leastsq=[' [wm8, tm8, ym8, x_init8]=prepare8(); [yg_res9,
hpf_res9]=prepare9(); [fopt,xopt, grdopt]=leastsq_main1();' ;
'[r1,r2,l1,l2,ttl_Length]=exchange8(); [yg_res1]=yg_resp(1024); [
tube2_res1, L1, L2, L3, A1, A2, A3 ]= two_tubes2_resp();
[hpf_res1]=hpf_response(1024); [overall_res1,db_2tube, phi_2tube
]=overall_response(); plot_2tube(4,1);
[r1,r2,l1,l2,ttl_Length]=exchange9(); [yg_res1]=yg_resp(1024); [
tube2_res1, L1, L2, L3, A1, A2, A3 ]= two_tubes2_resp();
[hpf_res1]=hpf_response(1024); [overall_res1,db_2tube, phi_2tube
]=overall_response();';'[r1,r2,l1,l2,ttl_Length]=exchange8();'];
end
//
//-----------------------------------------------------------------
//
ADD_MENU_GEN=1; // set ADD_MENU 1
to add menu button of some functions
//
//
if ADD_MENU_FFT == 1 then
delmenu('step5_generation');
if (f_win == 1) | (scilab_version_number >= 4) then
addmenu('step5_generation',[ '(1)set_section_qty()' ;
'(2)make_waveform()' ; 'plot_waveform()'; 'y3out_snd_play1()';
'y3out_snd_save1()' ]);
step5_generation=[ '[N_REPEAT]= set_section_qty()';
'[yg,y2tm,y3out]= make_waveform();' ; 'plot_waveform(5)';
'y3out_snd_play1()'; 'y3out_snd_save1()'] ;
else
addmenu('step5_generation',[ '(1)set_section_qty()' ;
'(2)make_waveform()' ; 'plot_waveform()'; 'y3out_snd_save1()' ]);
step5_generation=[ '[N_REPEAT]= set_section_qty()';
'[yg,y2tm,y3out]= make_waveform();' ; 'plot_waveform(5)';
'y3out_snd_save1()'] ;
end
end //if ADD_MENU_GEN == 1 then
//
//
//-----------------------------------------------------------------
//
if f_win == 1 then
ADD_MENU_SND=0;
else
ADD_MENU_SND=0; // set
ADD_MENU 1 to add menu button of some functions
end
//
//
if ADD_MENU_SND == 1 then
delmenu('sound_play');
addmenu('sound_play',[ 'snd_play1()' ; 'snd_save1()' ]);
sound_play=[ 'snd_play1()' ; 'snd_save1()' ] ;
end //if ADD_MENU_SND == 1 then
//
//==============================================================++=
//
//////addmenu('&go'); // only windows shortcut
can alt+()
改定版 No.5 2009年7月18日